Bài tập về hàm đơn điệu (2)

Hàm đơn điệu liên quan đến đạo hàm như thế nào?

Chú ý đến định lý sau là cơ sở để xét hàm tăng, hàm giảm bằng công cụ đạo hàm. Yêu cầu trước tiên các em ôn lại bảng xét dấu đã học ở lớp 10.

ĐL: Nếu f(x) là hàm xác định và có đạo hàm trên K.

a, Nếu f'(x) >0 với mọi x thuộc K thì f là hàm đồng biến (tăng) trên K.

b, Nếu f'(x) <0 với mọi x thuộc K thì f là hàm nghịch biến (giảm) trên K.

Trên đây, K là khoảng mở (a,b) hay khoảng đóng [a,b].

———

Bài tập:

Bài 1. Xét sự đồng biến, nghịch biến của hàm số:

a. y=x^3 - 2x^2 + x +2.

b. y = x^3 + 3x^2 + 3x + 7.

c. y = \dfrac{-3x + 4}{2x-1}.

d. y = \dfrac{x^2 - 3x + 6}{x-1}.

Bài 2. Tìm các khoảng đơn điệu của hàm số:

a. y = \dfrac{x^2 - x +4 }{x}.

b. y=\dfrac{-x^2 + 2x +1 }{x - 1}.

c. y = x^3 - 3x + 2.

Chú ý: Những bài tập trên đây đều là những bài tập phải xét dấu của đạo hàm, do đó các em hãy xem lại phần xét dấu ở sách lớp 10 nhé.

Advertisements

3 thoughts on “Bài tập về hàm đơn điệu (2)

  1. K ở đây là gì thế ?
    Nếu K=(a;b) thì OK
    Nếu K=[a;b] thì phải thêm giả thiết hàm số liên tục trên $latex[a;b]$ thì định lý mới đúng được.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s