A = B+ I, B^2 = 0

Let {A = \begin{pmatrix} a + 1& -a\\ a & -a + 1\\ \end{pmatrix}}. What can we say about {A}?

Remark: {A} has some interesting properties: {A = B + I} where {B^2 = O}.

  1. {A^n = nB+I, n \in \mathbb{Z}}.
    Indeed, we can prove it by induction.
    {A^2 = (B+I)(B+I) = B^2 + 2B + I = 2B+I},  {(B+I)(-B+I) = I \Rightarrow A^{-1} = -B + I, A^{-2} = (-B + I)(-B+I) = -2B+I\dots} Suppose that {A^k = kB+I}, we have {A^{k+1} = (kB+ I)(B+I) = kB^2 + (k+1)B + I = (k+1)B + I}. Moreover, suppose that {A^{-k} = -B+I}, we have {A^{-k-1} = (-kB+I)(-B+I) = -(k+1)B + I}.
  2. {A^{-1} = - B+I \Leftrightarrow B + I = - A^{-1} + 2I \Leftrightarrow A = -A^{-1} + 2I \Leftrightarrow A + A^{-1} = 2I}.
Advertisements

Về một bài toán trong kỳ thi lần 2 (2016-2017), môn Đại số

Bài toán trong kỳ thi lại như sau:

Câu 3. Cho {W_1 = \{(x,y,0) | x,y \in \mathbb{R}\}}, {W_2} là không gian vec tơ con của {\mathbb{R}^3} sinh bởi hai vec tơ {(1,2,3)}{(1,-1,1)}.

  1. Tìm điều kiện {x, y, z} để {u = (x,y,z) \in W_2}.
  2. Tìm {W_1 + W_2}.
  3. Tìm {W_1 \cap W_2}.

Hầu hết các em chỉ làm được ý 3 và làm sai hai ý còn lại. Ý 1 nhiều em đưa ra được hệ phương trình nhưng lại lúng túng.

1. có thể giải đơn giản như sau: {u = (x,y,z) \in W_2} nếu và chỉ nếu tồn tại {a, b} sao cho {(x,y,z) = a(1,2,3) + b(1,-1,1)}. Điều này tương đương với hệ sau có nghiệm {a, b}:

\displaystyle \begin{cases} a+b &=x\\ 2a-b&=y\\ 3a+b&=z \end{cases}.

Đến đây các em có thể dùng hạng ma trận để đưa ra liên hệ giữa {x, y, z} hoặc có thể xử lý trực tiếp hệ:

Từ hai pt đầu có {3a = x+y}, pt thứ 3 có {3a = z - b} do đó: {x+y = z - b}, mặt khác {b= 2x-y/3} nên {x + y = z - 2x/3 + y/3} và kéo theo {5x + 2y - 3z = 0}, đó chính là điều kiện cần tìm.

2. Dựa vào ý 1, dự đoán rồi chứng minh \mathbb{R}^3 = W_1 + W_2. Tại sao dự đoán như này? Vì quan sát cơ sở của hai không gian con W_1, W_2, hợp của hai cơ sở này có đến 3 vec tơ độc lập tuyến tính.

Có thể phân tích (x,y,z) = (x-3z/5,y, 0) + (3z/5, 0 ,z).