# The Gaussian curvatures of spheres

1. An example of the Gaussian curvature

Example 1 Compute the Gaussian curvature of sphere $\displaystyle S = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = R^2\}.$

Parametrizing ${X:}$ $\displaystyle U \subset \mathbb{R}^2 \rightarrow S$ $\displaystyle (u, v)\mapsto (u, v, \sqrt{R^2 - u^2 - v^2}).$

we have $\displaystyle X_u = (1, 0, -\frac{u}{\sqrt{R^2 - u^2 - v^2}}), X_v = (0, 1, -\frac{v}{\sqrt{R^2 - u^2 - v^2}})$

The coefficients of the second fundamental form: $\displaystyle E = \langle X_u, X_u \rangle = 1 + \frac{u^2}{R^2 - u^2 - v^2}$ $\displaystyle G= \langle X_v, X_v \rangle = 1 + \frac{v^2}{R^2 - u^2 - v^2}$ $\displaystyle F = \langle X_u, X_v \rangle = \frac{uv}{R^2 - u^2 - v^2}$ $\displaystyle \Rightarrow EG - F^2 = (1 + \frac{u^2}{R^2 - u^2 - v^2})(1 + \frac{v^2}{R^2 - u^2 - v^2}) - \frac{u^2v^2}{(R^2 - u^2 - v^2)^2}$ $\displaystyle = 1 + \frac{u^2}{R^2 - u^2 - v^2}+ \frac{v^2}{R^2 - u^2 - v^2}$ $\displaystyle EG - F^2= \frac{R^2}{R^2 - u^2 - v^2}$

we compute coefficients of the first fundamental form: $\displaystyle N= -\frac{X_u \wedge X_v}{\|X_u \wedge X_v\|}$ $\displaystyle X_u \wedge X_v = (\frac{u}{R^2 - u^2 - v^2}, \frac{v}{R^2 - u^2 - v^2}, 1)$ $\displaystyle \|X_u \wedge X_v\| = \sqrt{\frac{R^2}{R^2 - u^2 - v^2}}$ $\displaystyle = \frac{R}{\sqrt{R^2 - u^2 - v^2}}$ $\displaystyle \Rightarrow N = -\frac{X_u \wedge X_v}{\|X_u \wedge X_v\|} = -(\frac{u}{R}, \frac{v}{R}, \frac{\sqrt{R^2 - u^2 - v^2}}{R})$ $\displaystyle X_{uu} = (0, 0, - \frac{R^2 - v^2}{\sqrt{(R^2 - u^2 - v^2)^3}})$ $\displaystyle X_{vv} = (0, 0, -\frac{R^2-u^2}{\sqrt{(R^2-u^2-v^2)^3}})$ $\displaystyle e = \langle N, X_{uu} \rangle = \frac{v^2 - R^2}{R}\cdot \frac{1}{R^2 - u^2 - v^2}$ $\displaystyle g = \langle N, X_{vv} \rangle = \frac{u^2 - R^2}{R}\cdot \frac{1}{R^2 - u^2 - v^2}$ $\displaystyle f = - \langle N_u, X_v \rangle = \frac{uv}{R(R^2 - u^2 - v^2)}$

where $\displaystyle N_u = (-\frac{1}{R}, 0, \frac{u}{R\sqrt{R^2 - u^2 - v^2}})$ $\displaystyle X_v = (0, 1, -\frac{v}{\sqrt{R^2 - u^2 - v^2}})$

These imply that $\displaystyle eg - f^2 = \frac{1}{R^2(R^2 - u^2 - v^2)^2}[(u^2 - R^2)(v^2 - R^2) - u^2v^2]$ $\displaystyle = \frac{1}{R^2(R^2 - u^2 - v^2)^2}[- (u^2 + v^2)R^2 + R^4] = \frac{R^2[R^2 - u^2 - v^2]}{R^2(R^2 - u^2 - v^2)^2}$ $\displaystyle = \frac{1}{R^2 - u^2 - v^2}.$

By the above computation, the curvature of sphere is $\displaystyle K = \frac{eg - f^2}{EG - F^2} = \frac{1}{R^2}$. 