Posted in Calculus, Giải tích

Bài tập về hàm liên tục

Khi làm bài tập về xét hàm số liên tục. Các em chỉ cần nắm vững điều kiện liên tục của hàm số:

1. \lim\limits_{x \to x_0}f(x) = f(x_0).

2. \lim\limits_{x \to x_0^+}f(x) = \lim\limits_{x \to x_0^-}f(x) = f(x_0).

Thực ra hai điều kiện trên là một. Các em thử suy nghĩ xem vì sao nhé??

Bài tập.

Bài 1. a. Xét tính liên tục của hàm f(x) = \begin{cases} \dfrac{x^4-1}{x+1} & when \ x \ne -1\\ -4 & when \ x = -1\end{cases} trên \mathbb{R}.

b. Xét tính liên tục của hàm số sau: f(x) = \begin{cases} \dfrac{(x - \sqrt{2x-1})(x-11)}{x^2 - 12x +11} & when \ x \ne 1\\ 0 & when \ x = 1\\ \frac{11}{10} & when \ x=11\end{cases} trên \mathbb{R}.

Bài 2. a. Tìm a để hàm số sau f(x) = \begin{cases} \dfrac{\sqrt{1-\pi x}-\sqrt{1+x}}{x} & when \ x \ne 0\\ 2x^2+5ax - 5a & when \ x = 0\end{cases} liên tục tại x=0.

b. Xét tính liên tục của hàm số sau: f(x) = \begin{cases} 9x + \dfrac{|x|}{x} & when \ x \ne 0\\ 1 & when \ x = 0\end{cases} tại x_0 = 0.

Bài 3. a. Chứng minh rằng phương trình x^3 + x -1 =0 luôn có nghiệm trên \mathbb{R}. Hãy chỉ ra một khoảng chứa nghiệm đó.

b. Phương trình x^3 + x + 1 =0 có nghiệm trên \mathbb{R} hay không?

c. Chứng minh rằng phương trình (x^2+1)\cos x + 3x\sin x + 2 = 0 có nghiệm thuộc khoảng (0;\pi).

Posted in Calculus

Bổ sung thêm về bài tập giới hạn dãy số

Các em lưu ý khi tính giới hạn dãy số. Điều cốt lõi là phải khử những lượng có khả năng tiến ra \infty.

Chú ý: Nếu nhân lượng liên hợp thì dùng các hằng đẳng thức:

a - b = (\sqrt a - \sqrt b)(\sqrt a + \sqrt b), a - b = (\sqrt[3]{a} - \sqrt[3]{b})(\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}).

Một định lý khá quan trọng:

Nếu |u_n| \le v_n\lim v_n = 0 thì \lim u_n = 0.

Chẳng hạn: \lim \dfrac{\cos 2n}{n^2} = ?.

Ta có: |\dfrac{\cos 2n}{n^2}| \le \dfrac{1}{n^2} và vì \lim \dfrac{1}{n^2} = 0 nên theo định lý trên thì: \dfrac{\cos 2n}{n^2} = 0.

Các em có thể xem một số ví dụ qua link sau:

http://www.thaygiaolang.com/forums/showthread.php?t=231

BÀI TẬP:

Bài 1. Tính các giới hạn:

a. \lim\dfrac{n^4}{(n+1)(2+n)(n^2 + 1)}.

b. \lim\dfrac{\sqrt{n^2+1} - 3n - 1}{-6n - \sqrt{n} + 1}.

c. \lim\dfrac{(3n -1 )(n^2 + 2)(-3n^3 - 1)}{(2n^2+1)^3}.

d. \lim\dfrac{n.\sqrt{1 + 3 + 5 + \dots + (2n+1)}}{3n^2 - n +1}.

e. \lim\dfrac{4^{n+1} + 7^{n+2}}{6^n + 9^n}.

Bài 2. Tính:

a. \lim\dfrac{1 - 2.3^n + 6^n}{2^n(3^{n+1} - 5)},

b. \lim\dfrac{1 + \frac{1}{2} + \dots + \frac{1}{2^n}}{1 + \frac{3}{4} + \dots + (\frac{3}{4})^n},

c. \lim\dfrac{1 + 2 + 2^2 + \dots + 2^n}{1 + 3 + 3^2 + \dots + 3^n},

Bài 3. Tính:

a. \lim\dfrac{2\sin{n^2}}{n^2 + 3},

b. \lim{\sqrt{n^2 - n} - n},

c. \lim{\sqrt{n^2 + n} - \sqrt{n^2 + 1}},

d. \lim{\sqrt{n}(\sqrt{n+3} - \sqrt{n+1})},

e. \lim{\sqrt{n^2 + n + 2} - \sqrt{n+1}},