BT khảo sát và vẽ đồ thị hàm số

Khảo sát và vẽ đồ thị các hàm số sau:

Hàm số bậc 3.

Bài 1. 

a. y = x^3 - 3x;                  b. y= x^3-3x^2+3x-1.

c. y=-4x^3 + 3x

d, Khảo sát hàm số y=x^3 và xét số giao điểm của đồ thị hàm số đó với đường thẳng y=m.

 

Bài 2. Khảo sát hàm số:

a. y = -x^3 + 3x-2.                  b. y=x^3 + 3x^2 -1.

Bài tập về đơn điệu và tìm tiệm cận của hàm số

Yêu cầu: Để làm các bài tập dưới đây, cần xem lại tam thức bậc hai và định lý về điều kiện để hàm số đồng biến, nghịch biến + giới hạn hàm số.

Bài I. Tìm m để:

1. Hàm số sau luôn đồng biến trên tập xác định của chúng:

a. y = 4x^3 + (m+3)x^2 +mx;

b. y=\dfrac{x^2 + mx -1}{x-1}.

2. Hàm số sau luôn nghịch biến trên tập xác định của chúng:

a. y=\dfrac{3x-1}{x-m}.

b. y= -\dfrac{x^3}{3} + (m-1)x^2 + (m+3)x-4.

Bài II. Tìm các tiệm cận của các đồ thị các hàm số sau:

1. y = \dfrac{x-1}{x+3}.                     2. y = \dfrac{x+2}{2x-1}.

3. y=\dfrac{2x+3}{5x-1}

Bài tập về hàm đơn điệu (2)

Hàm đơn điệu liên quan đến đạo hàm như thế nào?

Chú ý đến định lý sau là cơ sở để xét hàm tăng, hàm giảm bằng công cụ đạo hàm. Yêu cầu trước tiên các em ôn lại bảng xét dấu đã học ở lớp 10.

ĐL: Nếu f(x) là hàm xác định và có đạo hàm trên K.

a, Nếu f'(x) >0 với mọi x thuộc K thì f là hàm đồng biến (tăng) trên K.

b, Nếu f'(x) <0 với mọi x thuộc K thì f là hàm nghịch biến (giảm) trên K.

Trên đây, K là khoảng mở (a,b) hay khoảng đóng [a,b].

———

Bài tập:

Bài 1. Xét sự đồng biến, nghịch biến của hàm số:

a. y=x^3 - 2x^2 + x +2.

b. y = x^3 + 3x^2 + 3x + 7.

c. y = \dfrac{-3x + 4}{2x-1}.

d. y = \dfrac{x^2 - 3x + 6}{x-1}.

Bài 2. Tìm các khoảng đơn điệu của hàm số:

a. y = \dfrac{x^2 - x +4 }{x}.

b. y=\dfrac{-x^2 + 2x +1 }{x - 1}.

c. y = x^3 - 3x + 2.

Chú ý: Những bài tập trên đây đều là những bài tập phải xét dấu của đạo hàm, do đó các em hãy xem lại phần xét dấu ở sách lớp 10 nhé.

Bài tập về hàm đơn điệu (1)

ĐN: Cho hàm số f: D \to \mathbb R. Hàm số được gọi là đồng biến trên (a,b) \subset D nếu với mọi x_1, x_2 \in (a,b) sao cho x_1 > x_2 thì f(x_1) > f(x_2). Hàm đồng biến còn gọi là hàm tăng.

Cho hàm số f: D \to \mathbb R. Hàm số được gọi là nghịch biến trên (a,b) \subset D nếu với mọi x_1, x_2 \in (a,b) sao cho x_1 > x_2 thì f(x_1) < f(x_2). Hàm nghịch biến còn gọi là hàm giảm.

Phương pháp xem hàm số đồng/ nghịch biến: Để xem hàm số đồng biến hay nghịch biến trên một khoảng (a,b), ta lấy giá trị x_1,x_2 \in (a,b) sao cho x_1 > x_2 rồi xét hiệu f(x_1) - f(x_2), chú ý, dùng giả thiết x_1 - x_2 > 0.

——–

Bài tập:

Bài tập 1. Xét sự biến thiên của các hàm số:

a. y = 3x^2 - 6x + 5 trên (-\infty,1)(1, +\infty).

b. y = \sqrt{x^2 + 2x} + 2011 trên (-1, +\infty).

c. y = \sqrt{x^2 - 4x + 15} trên (-\infty,2)(2,+\infty).

d. y = \dfrac{\sqrt{x^2 - 1}}{x} trên (1, +\infty).

Bài 2.

a. Chứng minh rằng hàm số y = x^2 -2|x| + m-1 đồng biến trên (2,+\infty).

b. Chứng minh rằng hàm số: y = x^3 - 3x +2 nghịch biến trên (-1,1).

Bài 3.  Cho hàm số: y=2x^2 -3|x| +3.

  1. Vẽ đồ thị hàm số.
  2. Biện luận theo m số nghiệm của pt: 2x^2 - 3|x| + 3 = m.

Để làm bài 3, các em xem kiến thức trong sách Đại số 10. Bài này cần thiết.