On the diffetential of a mapping 2

In the case {\psi : \mathbb{R}^n \rightarrow \mathbb{R}^m} case, there is a linear map, which is “linear approximation” of {\psi}. In the manifold case, there is a similar linear map, but now it acts between tangent spaces. If {M} and {N} are smooth manifolds and {\psi \colon M \rightarrow N} is a smooth map then for each {m \in M}, the map

\displaystyle d\psi \colon T_mM \rightarrow T_{\psi(m)}N

is defined by

\displaystyle d\psi(v)(f) = v(f \circ \psi)

is called the pushforward. Actually,

\displaystyle d\psi \colon TM \rightarrow TN.

Suppose that {\dim{M} \ge \dim{N}} and {f \colon M \rightarrow N} is a differentiable mapping. We have

Definition 1 The mapping {f} is called a trivial fibration (differentiable) on {N} if there exists a differential manifold {F}, is called fibre of {f}, and a diffeomorphism

\displaystyle \phi \colon M \rightarrow N \times F

such that the following diagram is commutative

sodo