Bảng điểm thành phần Toán cao cấp 2

Thầy up bảng điểm thành phần các nhóm 1 – 2 – 3 – 6. Các lớp trưởng lưu ý nhắc các bạn xem.

HẾT thời hạn thắc mắc.

Cách cộng, trừ:

  • Vắng 1 buổi trừ 2 điểm chuyên cần.
  • Điểm kiểm tra lấy cho hai cột: thứ hai và thứ ba.
  • Một dấu cộng +2 vào cột kiểm tra, cộng full cột 2 thì cộng sang cột 3.
  • Một dấu trừ -2 vào cột kiểm tra.
  • Các lớp trưởng đều được cộng tương ứng với 1 hoặc 2 dấu cộng.

Nếu ai có thắc mắc gì thì hãy gửi về mail: hpdung83@gmail.com, thời hạn: Hết 24h, ngày 29/05/2016. Sau thời hạn đó, thầy sẽ gửi bảng điểm và mọi thắc mắc không còn hiệu lực nữa. File bảng điểm có 4 tab tương ứng với các lớp.

Đây là link file bảng điểm thành phần: Toan cao cap2-Nhom-1-2-3-6

Chúc các em thi tốt.

D.

The \L ojasiewicz exponent at infinity

The \L ojasiewicz exponent at infinity

References: Paper of Krasinski, On the \L ojasiewicz exponent at infinity of polynomial mappings, Acta. Math. Vietnam. Vol. 32, No. 2-3, 2007.

Definition:

Let {F = (F_1, \dots, F_m) : \mathbb{C}^n \rightarrow \mathbb{C}^m} be a polynomial mapping. The \L ojasiewicz exponent of {F} at infinity is defined as the best exponent {\nu} for which the following inequality holds

\displaystyle |F(z)| \ge C|z|^\nu,

for some constant {C > 0} and sufficiently large {|z|}.

\displaystyle \mathcal{L}_{\infty}(F) := \sup\{\nu \in \mathbb{R}| \exists C >0, R>0 : \forall z \in \mathbb{C}^n, |z| \ge R, |F(z)| \ge C|z|^\nu\}.

Note that {\mathcal{L}_{\infty}(F) \in \mathbb{R} \cup \{-\infty\}}.

Definition

Let {F = (F_1, \dots, F_m): \mathbb{C}^n \rightarrow \mathbb{C}^m} be a polynomial mapping and {S \subset \mathbb{C}^n} be unbounded set. The \L ojasiewicz exponent of {F} at infinity on {S} is defined as the best exponent {\nu} for which the following inequality holds

\displaystyle |F(z)| \ge C|z|^\nu

for some constant {C > 0} and sufficiently large {|z|} in {S}. This exponent is denoted by {\mathcal{L}_{\infty}(F|S)}:

\displaystyle \mathcal{L}_{\infty}(F|S) :=\sup\{\nu \in \mathbb{R}| \exists C >0, R>0 : \forall z \in S, |z| \ge R, |F(z)| \ge C|z|^\nu\}.

For example

{F(x,y) = (x, xy-1): \mathbb{C}^2 \rightarrow \mathbb{C}^2.}

  • We have {\mathcal{L}_{\infty}(F) = -1}.
  • And {\mathcal{L}_{\infty}(F|S) = 0} where {S = \{y = 0\}}.

\L ojasiewicz exponent has relationship with properness of mappings

Theorem 1 {\mathcal{L}_{\infty}(F) > 0} if and only if {F} is a proper mapping.

Remark 1 Recall the properness of map. {F} is called proper mapping if {F} sastisfies the following property: {F^{-1}(K)} is a compact set if {K} is a compact set. This fact is equivalent to {|x| \rightarrow +\infty \Rightarrow |F(x)| \rightarrow +\infty}.

Về một bài toán trong kỳ thi lần 2 (2016-2017), môn Đại số

Bài toán trong kỳ thi lại như sau:

Câu 3. Cho {W_1 = \{(x,y,0) | x,y \in \mathbb{R}\}}, {W_2} là không gian vec tơ con của {\mathbb{R}^3} sinh bởi hai vec tơ {(1,2,3)}{(1,-1,1)}.

  1. Tìm điều kiện {x, y, z} để {u = (x,y,z) \in W_2}.
  2. Tìm {W_1 + W_2}.
  3. Tìm {W_1 \cap W_2}.

Hầu hết các em chỉ làm được ý 3 và làm sai hai ý còn lại. Ý 1 nhiều em đưa ra được hệ phương trình nhưng lại lúng túng.

1. có thể giải đơn giản như sau: {u = (x,y,z) \in W_2} nếu và chỉ nếu tồn tại {a, b} sao cho {(x,y,z) = a(1,2,3) + b(1,-1,1)}. Điều này tương đương với hệ sau có nghiệm {a, b}:

\displaystyle \begin{cases} a+b &=x\\ 2a-b&=y\\ 3a+b&=z \end{cases}.

Đến đây các em có thể dùng hạng ma trận để đưa ra liên hệ giữa {x, y, z} hoặc có thể xử lý trực tiếp hệ:

Từ hai pt đầu có {3a = x+y}, pt thứ 3 có {3a = z - b} do đó: {x+y = z - b}, mặt khác {b= 2x-y/3} nên {x + y = z - 2x/3 + y/3} và kéo theo {5x + 2y - 3z = 0}, đó chính là điều kiện cần tìm.

2. Dựa vào ý 1, dự đoán rồi chứng minh \mathbb{R}^3 = W_1 + W_2. Tại sao dự đoán như này? Vì quan sát cơ sở của hai không gian con W_1, W_2, hợp của hai cơ sở này có đến 3 vec tơ độc lập tuyến tính.

Có thể phân tích (x,y,z) = (x-3z/5,y, 0) + (3z/5, 0 ,z).

Sylvester’s Problem, Gallai’s Solution

(Để tạm đây)

Source: http://www.cut-the-knot.org/proofs/SylvesterGallai.shtml

The Sylvester Problem has been posed by James Joseph Sylvester in 1893 in Educational Times:

Let n given points have the property that the line joining any two of them passes through a third point of the set. Must the n points all lie on one line?

T. Gallai’s proof has been outlined by P. Erdös in his submission of the problem to The American Mathematical Monthly in 1943.

Solution

Given the set Π of noncollinear points, consider the set of lines Σ that pass through at least two points of Π. Such lines are said to be connecting. Among the connecting lines, those that pass through exactly two points of Π are called ordinary.

Choose any point p1Π. If p1 lies on an ordinary line we are done, so we may assume that p1 lies on no ordinary line. Project p1 to infinity and consider the set of connecting lines containing p1. These lines are all parallel to each other, and each contains p1 and at least two other points of Π. Any connecting line not through p1 forms an angle with the parallel lines; let s be a connecting line (not through p1) which forms the smallest such angle:

Gallai's proof of Sylvester's problem, part 1

Then s must be ordinary! For suppose s were to contain three (or more) points of Π, say, p2, p3, p4 named so that p3 is between p2 and p4:

Gallai's proof of Sylvester's problem, part 2

The connecting line through p3 and p1 (being not ordinary) would contain a third point of Π, say p5, and now either the line p2p5 or the line p4p5 would form a smaller angle with the parallel lines than does s.

References

  1. P. Borwein, W. O. J. Moser, A survey of Sylvester’s problem and its generalizations, Aequationes Mathematicae 40 (1990) 111 – 135
  2. P. Erdös, R. Steinberg, Problem 4065 [1943, 65], The American Mathematical Monthly, Vol. 51, No. 3 (Mar., 1944), pp. 169-171
  3. J. J. Sylvester, Educational Times, Mathematical Question 11851, vol. 59 (1893), p. 98

Bảng điểm thành phần các lớp Đại số, kì 1, 2016

Thầy up bảng điểm thành phần các lớp. Các lớp trưởng lưu ý nhắc các bạn xem.

Nếu ai có thắc mắc gì thì hãy gửi về mail: hpdung83@gmail.com, thời hạn: Hết 24h, ngày 05/01/2016. Sau thời hạn đó, thầy sẽ gửi bảng điểm và mọi thắc mắc không còn hiệu lực nữa. File bảng điểm có 4 tab tương ứng với các lớp.

Đây là link file bảng điểm thành phần: diem-thanh-phan-dai-so-nhom-1-6-9-16

Chúc các em ôn thi tốt.

D.

Hết thời hạn gửi thắc mắc.

Bảng điểm đã update một số trường hợp – 04/1: diem-thanh-phan-dai-so-nhom-1-6-9-16-updated-4-1